Optimizing Boron Maintenance Fertilization for Alfalfa

A. Sapkota, J.A. Torrion, R.N. Stougaard, D.M. Staudenmeyer, E.C. Glunk

Alfalfa (Medicago sativa L.) utilizes boron (B) for processes such as carbohydrate regulation, nitrogen fixation and flowering. Strategic B application in alfalfa has the potential to significantly impact alfalfa yield response. However, specific B fertilization recommendations for alfalfa in Montana have not yet been evaluated. The objective of this project was to evaluate the effect of five B application rates on alfalfa quality and yield. We hypothesized that alfalfa yield and quality would increase with increasing B application. Five B treatments were applied at two research sites (Dillon and Creston, MT) in a randomized complete block design: 0 kg B/ha, 0.280 kg B/ha in a split application, 0.560 kg B/ha in a split application, 1.123 kg B/ha in a split application, and 2.242 kg B/ha in a single application. All treatments were replicated four times. Treatments were harvested twice in Dillon and three times in Creston. In Creston, samples from a 1.52m x 4.57m strip of each plot and in Dillon, samples from 1m x 1m quadrat of each plot were weighed and subsampled for quality analysis. In year one, no significant differences (P> 0.05) were found in alfalfa yields at the Creston site, however, second harvest yields in Dillon were significantly impacted (P<0.049). The 0 kg B/ha treatment produced an average of 9190.98 kg/ha, and the 2.242 kg B/ha treatment producing an average of 10087.7 kg/ha. Protein content at the Dillon site was higher than expected, averaging 29.9% amongst all treatments. All other hay quality parameters were within expected ranges at both sites, and not affected by B treatment (P > 0.05). The effect of B application on yield observed at the Dillon site shows the potential of boron application on alfalfa performance. Insufficient precipitation at the Creston site likely resulted in no differences among treatments.

Keywords: alfalfa, boron, yield, hay quality, soil water